
Document Integrity through Mediated Interfaces1

Marcelo Tallis and Robert Balzer
Teknowledge

mtallis@teknowledge.com and bbalzer@teknowledge.com

Abstract

End-to-end integrity for documents is provided by
wrapping the tools that manipulate those documents and
mediating their operation to cryptographically integrity
mark those documents as they are being saved, to check
those cryptographic integrity marks as those documents
are loaded, and to record an application-level history of
the changes to the document. Corrupted documents (those
failing to match their cryptographic integrity mark) are
automatically repaired by replaying the recorded history
of the application-level changes to the document. That
recorded history is also used to identify all modifications
(including date and author) to any selected portion of the
document.

A Document Integrity Manager embodying these
capabilities has been developed for Microsoft Word.

1. Introduction

Operating systems provide a variety of facilities for
invoking programs and applying them to selected
documents. Over time, a particular document is the
product of manipulations and transformations carried out
by several users and possibly different programs.
However, no record of this transaction history of which
users and programs have transformed the document is
collected and kept. Operating systems only limit, through
access control lists, which files users can access and with
what file-level rights (read-only, write, and/or execute).
No limits are placed on which programs can manipulate a
particular document or how it can be transformed.
Malicious programs, operating under an authorized user’s
rights, can corrupt a document directly or by directing
another program to modify the document. Malicious users
can change the document without any record of those
modifications being kept. Under these circumstances, no
assurances can be given as to the integrity of the resulting
document.1

1 This work was funded by DARPA’s Intrusion Tolerant Systems
program under contract F30602-99-1-0542. The views presented are the
authors and do not represent the views of DARPA or Rome
Laboratories.

We are remedying this situation by creating an
Integrity Manager that monitors and records the tools (i.e.
programs), and operations within those tools, being
applied to documents to provide an end-to-end audit
record of all the transformations performed on those
documents. This operation level audit record can be used
off-line for attribution (who made a specific change and
when did it occur) and on-line for authorization (who
and/or which tools are allowed to make particular types of
changes to document). This transaction history is also
being used to repair corrupted documents by rebuilding
them by replaying the recorded sequence of modifications
to the document.

2. Technical Approach

Many modern COTS products have extensive APIs
that allow most or all of the functionality available in
those products interactively through their user interface to
also be available to programs running within or external to
that product through a “scripting” interface. Some of these
programs operate asynchronously from the user,
performing background or batch operations, but others
operate synchronously with the user automating and
expanding their current actions.

Our research focus is on the latter. These synchronous
scripting programs need to be invoked whenever the user
actions they are expanding or automating occur. This can
result from explicit invocation (because the user clicks on
a button invoking the “macro” defined by that button) or
from an event signaled by the COTS product that triggers
the invocation of the scripting program. Although some
COTS products support a large number of such events,
many only support a few or none at all, and no product
supports events for all user actions, especially since a
synchronous scripting program may need to be invoked
either before or after a particular action.

Our research is aimed at augmenting the scriptablity of
COTS products by expanding – beyond the initial set
provided by the COTS vendor – the set of user actions
and program behaviors that cause events that could trigger
scripting programs.

We do this by wrapping [1] the COTS product and
monitoring its behavior. The wrapper has access to all of

ISBN 0-7695-1212-7/01 $10.00 (C) 2001 IEEE

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data
needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to
Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork
Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave
blank)

2. REPORT DATE
7/14/2001

3. REPORT TYPE AND DATES COVERED
Research Paper 7/14/2001

4. TITLE AND SUBTITLE
Document Integrity through Mediated Interfaces

5. FUNDING NUMBERS

6. AUTHOR(S)
Tallis, Marcelo; Balzer, Robert

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
 REPORT NUMBER

DARPA

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

IATAC
3190 Fairview Park Drive
Falls Church, VA 22042

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; Distribution unlimited

12b. DISTRIBUTION CODE

A

13. ABSTRACT (Maximum 200 Words)

End-to-end integrity for documents is provided by
wrapping the tools that manipulate those documents and
mediating their operation to cryptographically integrity
mark those documents as they are being saved, to check
those cryptographic integrity marks as those documents
are loaded, and to record an application-level history of
the changes to the document. Corrupted documents (those
failing to match their cryptographic integrity mark) are
automatically repaired by replaying the recorded history
of the application-level changes to the document. That
recorded history is also used to identify all modifications
14. SUBJECT TERMS
IATAC Collection, information assurance, data integrity

15. NUMBER OF PAGES

8

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UNLIMITED

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

the inter-module interactions within the COTS product
and between it and the services it relies upon (i.e. the
operating system and middleware such as CORBA and
WinSock). By monitoring the resources it utilizes and its
interactions with the user through the user interface (just
another service it relies upon), the wrapper can detect
indicators that suggest particular user actions or program
behaviors. By combining these indicators with an
examination of the internal state of the COTS products
(through its scripting API) the wrapper can determine
whether or not the user action or program behavior of
interest is occurring, and if so issue a corresponding
pseudo-event to trigger the invocation of the appropriate
scripting program.

2.1 Prior Pseudo-Event Augmentation of COTS
Products

This line of research started with our extension of
Microsoft PowerPoint into a domain-specific Design
Editor [2] with user supplied semantics for the diagrams.
As the user modifies a design, domain specific analyzers
monitor the changes being made and feedback the results
of their analysis on the diagram within PowerPoint. In that
effort we only had to create four psuedo-events beyond
those natively provided by PowerPoint: object creation,
object destruction, connecting an object to a connector,
and breaking a connection between an object and a
connector. These psuedo-events allowed our synchronous
scripting program within PowerPoint to monitor all the
topological changes being made by the user to a diagram
and to communicate (via DCOM) those changes to the
domain-specific analyzers operating outside PowerPoint.

3. Document Integrity Manager

For this effort, we chose Microsoft Word as the COTS
product to wrap and expand into a Document Integrity
Manger. We did so because of its large market share and
the military’s heavy reliance on it for planning and
operations (MS Word and PowerPoint are reportedly the
two most widely used applications within the military).
We also did so because the Word scripting interface was
quite comprehensive and well documented and because it
supported a reasonable set of native events.

3.1 Technical Challenges

There were four technical challenges in this project. By
far, the most challenging was capturing all of the changes
being made to a document so that if it were corrupted the
recorded history of those changes could be used to rebuild
the document. The second was replaying that change

history to rebuild the document. The third was detecting
whether or not a document had been corrupted. The final
technical challenge was using the recorded change history
to determine who made particular changes to the
document and when they did so.

3.1.1 Capturing All Document Changes

Rebuilding corrupted documents from a recorded
history of changes required the capturing of all changes to
the document. This was in marked contrast to our prior
work on the PowerPoint Design Editor where only four
topological operations had to be captured. Our effort here
was guided by the following design goals:

• The history of changes should be described at
the application level of the COTS product
(MS Word) rather than at the low-level GUI
interactions level. For example, the user action
of clicking the command bar Bold button should
be described as Toggling Bold face and not
clicking left mouse button at position (x,y).
While recording the low-level GUI interactions
would be simple – because the Windows
operating system already provides a journaling
mechanism for capturing these low-level GUI
interactions – doing so would make the history
much larger and preclude its use for attribution.

• Changes should be described independently
from the particular mechanism in which those
changes were performed. The same action can
be performed by several mechanisms. For
example, the Toggle Bold face action might be
invoked by at least three different mechanisms:
clicking on a command bar button, selecting it
from a menu, and through a keyboard shortcut.
These alternative invocation methods are
semantically equivalent and representing them as
different actions would only add unnecessary
complications.

• The history of changes shouldn’t include
actions that don’t modify the document.
Viewing actions like browsing the document or
changing the zoom control don’t affect the
content of the document and hence should be
filtered out of the change history.

The user’s actions are determined by combining
information from several sources including events
reported by the Word and Office API, pseudo-events
reported by the wrapper, comparing the content of the
document before and after an action, and querying the
state of the GUI.

ISBN 0-7695-1212-7/01 $10.00 (C) 2001 IEEE

3.1.1.1 Capture Capabilities provided by the Word
API

Word’s COM interface provides the following
functionality that was instrumental in capturing the user’s
actions:

• An object model that allows the state of a
document to be examined.

• Trappable events that report coarse grained
operations on documents (e.g., Open, Save,
Close, New, Activate window, and Deactivate
window). For some of these operations the
corresponding event is triggered before the
operation is invoked and for others the event is
triggered after the operation is completed. For
example, for the Save and Close operations the
corresponding event is triggered before the
operation is invoked. However, for the Open and
New operations the corresponding event is
triggered after the operation is completed.

• Trappable events that report the activation of
standard command bar controls like standard
Pushbuttons, Combo boxes, and Menu items. For
the Pushbuttons and the Menu items the
corresponding event is triggered before the
command associated with that button or menu
item is executed. For the Combo boxes the
corresponding event is triggered after the
command associated with that combo box is
executed.

• A trappable event that is triggered each time that
a different region of a document is selected.

Although these capabilities were useful, they were not
sufficient for capturing user actions. One reason is that
some of the actions that are preceded by a trigger event,
such as Save or Close, may not actually occur because the
user aborts the operation when presented with the
confirmation dialog box. Word’s COM interface doesn’t
report whether such operations actually occurred or were
aborted. This lack of confirmation for operations with
preceding events is clearly inadequate for reliably
capturing user actions.

A second limitation is that many of the user actions we
needed to capture (such as typed text or manipulation of
non-standard command bar controls) had neither a
preceding nor a following event associated with them, and
hence were invisible through the native Word API.

3.1.1.2 Augmenting the Word API with Pseudo-
Events.

We therefore constructed our wrapper to generate the
following pseudo-events:

• Completion of the command associated with a
pushbutton or a menu item. This compliments
the activation event provided by Word’s API and

allows the triggered script to examine the state of
the document after the execution of the command
(e.g., to determine the values entered by the user
in the fields of a dialog box displayed by a
command).

• Manipulation of non-standard command bar
controls (e.g., the Undo control)

• Typed text
• Keyboard shortcuts
• Dragging text (e.g., to move or copy text)
• Completion of the Save and Close operations.

This pseudo-event confirms that the user did not
abort the Save or Close operation. For the Save
operation it also provides access to the pathname
of the saved document and allows the checksum
of the saved document to be computed.

3.1.1.3 Document Modification Capture Examples

In this section we describe how a few Word operations
were captured. These examples illustrate how information
from different sources is combined to identify the actions
performed by the user. These examples are presented in
order of increasing complexity.

3.1.1.3.1 Setting the Current Selection

This example illustrates a simple case in which the
Word API directly reports the operation to be captured.

Most Word operations act upon the current Selection.
The current Selection can be a contiguous range within the
document that the user has highlighted or can be collapsed
into an Insertion Point. The user sets the current Selection
by a variety of methods including: the directional arrows
(left, right, up, and down) to move the insertion point,
mouse clicks to set the Insertion Point at a determined
position, dragging the mouse pointer to select a range, and
expanding the current selection with Shift+arrow keys.

However, not all of these Selection changes need to be
recorded. Those that are followed by another Selection
change without an intervening document modification
(e.g., when the user moves the Insertion Point several
positions ahead by repeatedly pressing the arrow key) are
superfluous and aren’t recorded.

Capture Procedure

1. The Word API issues a WindowSelectionChange
event and passes a reference to the Word
Selection object each time that a different
Selection is made.

2. The position of the current Selection is cached
but not recorded until a subsequent document
modification is detected.

ISBN 0-7695-1212-7/01 $10.00 (C) 2001 IEEE

3.1.1.3.2 Command Bar Bold button ()

This example illustrates a case in which the MS Office
API reports a GUI event that can be directly related to the
operation to be recorded.

The Command Bar Bold button toggles the Bold
property of the current Selection.

Capture Procedure

1. When a command bar button is pushed the Word
API issues a Click event and passes a handle to
the object that corresponds to that button. The
event is triggered before the action associated
with that button is executed.

2. One property of the Button object is its Control
ID, a unique and fixed value assigned to each
control. This ID is examined to detect the
invocation of the Toggle Boldface command.

3.1.1.3.3 Command Bar Style combo box ()

This example illustrates a case in which the document
state resulting after a command has been completed must
be examined to determine the parameters of an operation.

The Command Bar Style combo box sets the style of
the current Selection.

Capture Procedure

1. When the user changes the selection in a
command bar combo box, the Word API issues a
Change event and passes a handle to the Combo
Box object as an argument. This event is
triggered after the command associated with that
control is executed.

2. The combo box’s ID is used to identify the Style
command. The style that the user selected is
obtained from the Style property of the selected
text (notice that this reflects the choice made by
the user because the combo box Change event is
triggered after the associated command is
executed). A ChangeStyle operation is recorded
with the name of the style as its parameter.

3.1.1.3.4 Format Paragraph dialog box (

Paragraph...)

This example illustrates a case in which the document
state before and after the execution of a command must be
compared to determine the parameters of an operation. It
also illustrates the use of a mediator to intercept the end of
the processing of a command invoked through a menu.

The Format Paragraph menu item opens a dialog box
for setting some paragraph properties of the current
Selection (See Figure 1.).

Figure 1: Format Paragraph dialog box

Capture Procedure

1. When the user selects the Format Paragraph
menu item the Word API issues a Click event
and passes a handle to the Menu Item object as
an argument. This event is triggered before the
action associated with that button is executed.

2. The menu item ID identifies the Format
Paragraph command. The default values for the
fields of the Format Paragraph dialog box are
cached (this information reflects the state of the
document before the execution of the command).

3. A mediator installed in the window message
handler for the Menu Bar Pop-up window issues
a pseudo-event signaling the completion of the
procedure that processes this pop-up window.
This event necessarily occurs after the Format
Paragraph command has completed and is used
as a surrogate for that event.

4. The pseudo-event triggers code that obtains the
new default values for the fields of the Format
Paragraph dialog box (which now reflect the
state of the document after the execution of the
command) and compares them with the cached
values to determine which fields have changed. It
records a FormatParagraph operation with those
fields and their new values as parameters.

3.1.1.3.5 Copy/Move through direct manipulation

This example illustrates a case in which the Word API
doesn’t provide events that enable these actions to be
captured. Hence we mediated the low level GUI interfaces
to generate the required pseudo-events. To do so we took
advantage of a visual clue in the GUI – that the mouse
pointer changes its shape when it is over the selected text

ISBN 0-7695-1212-7/01 $10.00 (C) 2001 IEEE

Normal |

f. ■

,*....*»**, IlM^bWkW. |

I 3

p ^r n

E
■*■ i

=1

– to determine the nature of the application-level
operation in progress.

In a direct manipulation Copy/Move, the selected text
is dragged with the mouse to another location. If the Ctrl
key is held down during this operation then it is a Copy,
otherwise it is a Move.

Capture Procedure

1. A mediator installed in the window’s message
handler for the main Word window reports the
beginning of the procedure that handles the
Mouse Left-Button Push-Down.

2. The shape of the mouse pointer at this time is
used to determine whether the mouse pointer was
over selected text. If so and the left mouse button
is depressed then a drag operation has been
initiated. The current location of the selected text
is cached (this location corresponds to the state
of the document before the drag operation).

3. The same mediator mentioned in step 1 reports
the completion of the window message handler
procedure, indicating the completion of the
application-level Copy/Move operation.

4. Several elements of the current state of the
document are examined to gather all the
information needed to record the Copy or Move
operation. First the state of the Ctrl key is
checked to distinguish between Copy and Move
operations. Then the now current location of the
Selection is obtained (it now corresponds to the
state of the document after the operation was
carried out). Because Word has an AutoCorrect
feature that automatically inserts or removes
extra white spaces around the copied/moved text
for the user and because this feature is only
active for Copy/Move operations performed
through the GUI (as opposed to those performed
through the scripting API), the effects of this
AutoCorrect operation must also be recorded for
the current Selection and, in the case of the
Move, in the place where the moved text used to
be. Finally, the Copy or Move operation is
recorded with parameters indicating the distance
(positive or negative) that the selected text was
moved and the number of surrounding white
spaces added or deleted.

3.1.1.3.6 Typing (and AutoCorrect)

This example illustrates another case in which the
Word API doesn’t provide events that enable these actions
to be captured. However, in this case there were a number
of extra challenges. The first was that at the time that our
mediators reported the typing activity, Word’s internal
state hadn’t been updated so we couldn’t use its API to

capture the typed text. The second challenge was that
capturing the typed text was only part of the job. By some
obscure mechanism, Word divides long sequences of
typing into undoable chunks (i.e., each undo operation
undoes exactly one of these chunks of text). We therefore
needed to detect exactly when Word chunked the typed
sequence so that our recorded sequence of application-
level changes would remain synchronized with Word’s
sequence of undoable units. We were able to overcome
these problems through a discovery made after lengthy
spying. We observed that Word redirected a keyboard
message to a window message handler procedure only
when it regarded that typed character as the first character
of a new undoable unit. This gave us a way to detect the
creation of those typed chunks. We also observed that
when Word processed that first character of an undoable
unit, its internal state had been updated to include the text
typed in the previous chunk. This gave us a way to capture
the typed text in each chunk.

Capture Procedure

1. A mediator installed in the window message
handler for the main Word window reports the
beginning of the procedure that handles the Key-
Down messages. This event signals the beginning
of a typing chunk.

2. The previous typing chunk, if any, is obtained
through the Word API and recorded.

These two steps are repeated until a different type of
event is received. This indicates that the last typing chunk
is completed, and that last typing chunk is obtained
through the Word API and recorded.

3.1.2 Replaying the Recorded Change History

This section describes the challenges faced in replaying
the recorded change history to rebuild a corrupted
document.

For most operations this replay is straightforward
because the Word API has an operation that corresponds
to the recorded change and the history includes all the
information required for performing that operation.

However, for some operations (e.g. AutoCorrect) there
is no corresponding operation in the Word API. For these
operations the recorded change either had to be translated
into a sequence of available operations, or the captured
operation had to be simulated through the GUI so that
Word would process it (performing the COM unavailable
operation) as if it had come from the user. Sometimes this
simulation through the GUI required execution of
functions at the OS level to emulate device operations
(e.g., keyboard input).

ISBN 0-7695-1212-7/01 $10.00 (C) 2001 IEEE

3.1.2.1 Replay Capabilities provided by the Word API

Word’s COM interface provides the following
functionality that facilitated execution of the captured
operations (used for reconstructing a corrupted
document).

• Methods to perform application level commands
(e.g., Execute the Toggle Bold Face command on
the selected text)

• Methods that perform fine grained changes to the
elements that represent the state of the document
(e.g., set the boldface property of the text
between the positions 1 and 10 equal to True).

3.1.2.2 Document Modification Replay Examples

In this section we describe how the example document
modification operations (described above in the Capture
section) are replayed. The first three of these examples
(Selection change, Command Bar Style combo box, and
Format Paragraph dialog box) are skipped because the
Word API contains an operation corresponding to these
changes and replaying them merely consists of invoking
those operations with the recorded parameters.

3.1.2.2.1 Copy/Move through direct manipulation

Replay

This example illustrates a case in which the Word API
does not provide a specific method for replicating this
operation and hence it had to be implemented through a
sequence of lower level commands. This forced us to
create a special mechanism to handle the undo of these
multiple-step operations atomically.

Although Word does not provide a specific method for
Copy or Move they can easily be implemented through a
sequence of lower level Word operations (copying,
cutting, pasting, and inserting and deleting white spaces
around the copied or moved text).

However, this multi-step implementation breaks the
correspondence we’ve been maintaining between the
recorded history and Word’s undoable units. What was
originally an atomic operation has, in the reconstructed
copy, become a sequence of operations. If the recorded
history contained an Undo of this operation, that Undo
would operate differently in this reconstructed copy than it
did in the original document (in the original document it
would have undone the entire Move or Copy operation,
while in the reconstructed copy it would only undo the
very last operation in the multi-step sequence).

We handled this problem by placing special multi-step-
begin and multi-step-end marks in the Undo Stack before
and after executing this operation. When our
implementation of the Undo operator pops out this special
multi-step-end mark, it realizes that it is undoing a
multiple step operation and keeps executing undoes until

it reaches the multi-step-begin mark. To place these
special marks in the Undo stack we inserted a special
piece of text in the document (“<beginning multiple-steps
operation>”) and then deleted it. Hence, we only left a
footprint in the Undo stack.

3.1.2.2.2 Typing (and AutoCorrect) Replay

This example illustrates a case in which the Word API
does not provide an exact method for replaying this
operation. Although it provides a mechanism for inserting
text into a document, this action does not always produce
the same effect as when the text was originally typed
through the GUI because the API operation does not
trigger the AutoCorrect and AutoFormat rules built into
Word.

We overcame this problem by implementing our own
typing method that simulated the entry of this text through
the GUI to Word as if a user was typing it. However, this
technique had two undesirable side effects that required
compensation. The first was a synchronization issue.
When replaying the history of operations to reconstruct a
corrupted document, a race condition was produced
between the operations executed through the Word API
and the typing operations fed through the simulated
keyboard input. This race condition was remedied through
synchronization primitives that sequentialized the two
input streams.

The second side effect from replaying our typing
operators was Word would split the input into different
undoable chunks than it had originally. To compensate for
this problem we employed a grouping mechanism similar
to the one described in the implementation of the
Copy/Move operation above

3.1.3 Ensuring Document Integrity
.

When a document is created the Integrity Manager
creates a version history for it. Each time that a persistent
copy of the document is saved, the Integrity Manager
generates a universally unique ID to identify that version
of the document and stores this ID within the document
itself. It also adds a record to the document’s version
history that contains the unique version ID, the user that
saved the document, a timestamp, the captured sequence
of the changes performed to the document since the
previous version, and a cryptographic integrity mark that
is a function of the content of the document (i.e., a
cryptographic checksum).

When a document is opened, the Integrity Manager
finds its version record in the document’s version history
and checks the integrity of the document against the
cryptographic integrity mark stored in the version history.
If the document was corrupted or was modified outside of
the control of the Integrity Manager then it will no longer

ISBN 0-7695-1212-7/01 $10.00 (C) 2001 IEEE

match its cryptographic integrity mark. When this occurs
the user is offered the option of reconstructing the
corrupted document from its recorded change history.

3.1.4 Attribution

The availability of the history of changes performed to
a document allowed us to implement a novel attribution
scheme. It utilizes a time lever to allow the user to move
forward or backward through the document’s history
while looking at its state at those points in time. At each
instant, the system displays the attribution information
associated with the current operation (i.e. who performed
it and when the operation occurred). In this time lever
tool, forward transitions are performed by executing the
recorded sequence of changes while backward transitions
are performed by executing Word’s Undo command.

4. Discussion and Future Work

4.1 Managing the Complexity of Word

As noted in the Technical Challenges section,
capturing all of changes to a document is the biggest
challenge faced by this project. It is exacerbated by the
size and complexity of the Word interface. Based on an
analysis of Word’s built-in tool for customizing its user
interface there are over 1100 unique Word commands and
almost 900 unique command bar controls. This includes a
broad range of commands from those that change the text
font to commands that move the insertion point, to print
command, etc. Of these, roughly 270 affect the textual
content of a Word document (i.e., excluding commands
for drawing, manipulating forms, databases, pictures,
webs, and tables).

However, most users only use a very small subset of
these commands. Based on a survey conducted in our
group, we found that only 19 of these commands were
commonly used, an additional 42 were used infrequently,
and the rest were hardly, if ever, used. We therefore
focused our initial implementation effort on the commonly
used subset and to a lesser extent the infrequently used
subset. Currently, the Document Integrity Manager can
capture and replay 89% of the commonly used commands,
19% of the infrequently used commands, and none of the
rest.

4.1.1 Generic Capture and Replay

Given the formidability of the Word API, we
recognized from the start of the project that individual
capture and replay mechanisms could not be built for
every Word command. We therefore devised a strategy
for handling the remaining less frequently used commands

through a generic capture and replay mechanism. This
strategy relied upon the knowledge that almost all Word
commands are scoped in their effect by the range of the
current Selection (the few that didn’t would have to be
handled individually). Thus, if the state of this selection
were cached before the execution of the modifying
command, then the set of changes made by that command
could be forensically discovered by comparing the cached
state with the resulting state and extracting the differences.

This strategy also required finding a general
mechanism for detecting that the document had been
modified that was independent of the particular command
that caused that change. Initially, we planned to use
Word’s document-modified attribute for detecting these
generic changes, but this would have required us to
continually reset it through the scripting API to not-
modified so that we could detect when generic (i.e.
otherwise undetected) changes had occurred and to restore
it when Word actually needed to access this document
attribute (i.e. for Save and Auto-Save).

We have since discovered an alternative generic
change indicator that is better because it is more specific
and because it only relies on monitoring the state of the
document (rather than changing it as we would have had
to do with the document-modified attribute). This
alternative generic change indicator is the depth of
Word’s Undo stack. Each time the document is changed,
Word pushes the change (in a proprietary inaccessible
format) onto the Undo stack so that it can later be undone
if the user so chooses. While we can’t access the change
itself from the Undo stack (a real pity – being able to do
so would have greatly simplified the Capture challenge),
we can detect the presence of the new item at the top of
the stack, and that is sufficient to determine that the
document has been modified.

We delayed the implementation of this generic capture
and replay mechanism until now so that its
implementation could utilize the mechanisms already built
for the individual commands to extract changes from a
completed command (by forensically comparing the
cached state of the Selection with the resulting state) and
the better understanding we have now developed of how
Word functioned and how to utilize its scripting API (such
as the recognition that the depth of the Undo stack was a
better indicator of generic change).

4.2 Limitations

Although some operations are sensitive to Word’s
configuration (such as whether the AutoCorrect feature is
turned on or not), we are not currently detecting and
recording changes in this configuration. We are also not
recording changes to the templates (including
modifications to the Styles). Finally, although we might be

ISBN 0-7695-1212-7/01 $10.00 (C) 2001 IEEE

able to detect the invocation of macros and invoke the
same macro during document reconstruction, we wouldn’t
be able to reproduce the same behavior if that macro
interacted with the environment (e.g., interactive input
from the user or reading the contents of a file) unless
those interactions were also captured.

4.3 Future Work

4.3.1 Enhanced Attribution

We will enhance our time lever tool so that it only
displays changes that affect the user-selected portion of
the document containing the change to be attributed. The
time lever tool will extract from the history of changes the
subset of operations that impacted that selected portion of
the document and convert the coordinates of each of those
extracted changes to be relative to the beginning of the
selected portion of the document. To identify this subset
of relevant changes, the tool will replay the modification
history backwards keeping track of the selected range
until it collapses. It will then replay the change history
forward keeping track of the selected range and extracting
the operations that impact that range. Finally, the time
lever tool will interactively display this condensed history
–containing only the extracted operations that affect the
selected portion of the document – so that the user can
zero in on the particular change requiring attribution.

4.3.2 Additional Document Integrity Managers

After completing the implementation of the Word
Document Integrity Manager, we plan to create a
Document Integrity Manager for PowerPoint so that
briefings could also be protected from malicious attacks
and changes to those briefings could be attributed. We
expect to leverage the current implementation, particularly
the generic capture and replay mechanism.

We also plan to simplify the development of future
Integrity Managers so that this technology can be applied
to a broader set of COTS tools by developing a generic
Integrity Manager that performs all of the common
functions (such as recording the captured modifications,
maintaining the document’s version history, attaching
digital signatures to the document, detecting that a
document is corrupted when it is loaded, and providing
attribution services), and interfaces to COTS-specific
modules that capture the modifications in that COTS tool
and replay recorded changes during document
reconstruction.

We also plan to examine other applications of this
technology, such as Instructional Tutoring systems, that
take advantage of its capability to monitor user actions in
application-specific terms.

5. References

[1] Robert Balzer and Neil Goldman: Mediating
Connectors: A Non-ByPassable Process Wrapping
Technology, DARPA DISCEX Conference 2000, Hilton
Head SC, Jan 25-27, Vol II, pp 361-368.

[2] Neil Goldman and Robert Balzer: The ISI Visual
Design Editor Generator, 1999 IEEE Symposium of
Visual Languages, Tokyo, Japan, Sept 13-16, pp 20-27.

ISBN 0-7695-1212-7/01 $10.00 (C) 2001 IEEE

	DISCEX 2001
	Return to Main Menu

